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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround

“A picture of a man giving a thumps up with a cell phone in hand.”

“An elephant walking draped with a colorful blanket.” 

“One ancient vase [...] the backdrop of a serene, moonlit desert landscape.” 

“A train blowing smoke is coming down the tracks.”
Fig. 1: Comparison across Stable Diffusion (SD) [37], GLIGEN [25], and our Re-
Ground. SD (2nd column) can generate an image aligned with the input prompt
(shown below for each row), while it does not allow taking spatial constraints such as
bounding boxes and labels. GLIGEN (3rd column) enables spatial grounding capability
using gated self-attention, although it often disregards some descriptions in the input
prompt due to bias towards bounding box information. Such trends also occur when
only activating gated self-attention for 0.2 fraction of the initial denoising steps (4th
column). Our ReGround (last column) resolves the issue of description omission while
accurately reflecting the bounding box information.

https://re-ground.github.io
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Abstract. When an image generation process is guided by both a text
prompt and spatial cues, such as a set of bounding boxes, do these ele-
ments work in harmony, or does one dominate the other? Our analysis of
a pretrained image diffusion model that integrates gated self-attention
into the U-Net reveals that spatial grounding often outweighs textual
grounding due to the sequential flow from gated self-attention to cross-
attention. We demonstrate that such bias can be significantly mitigated
without sacrificing accuracy in either grounding by simply rewiring the
network architecture, changing from sequential to parallel for gated self-
attention and cross-attention. This surprisingly simple yet effective solu-
tion does not require any fine-tuning of the network but significantly re-
duces the trade-off between the two groundings. Our experiments demon-
strate significant improvements from the original GLIGEN to the rewired
version in the trade-off between textual grounding and spatial grounding.

Keywords: Textual Grounding · Spatial Grounding · Network Rewiring

1 Introduction
The emergence of diffusion models [14,40,41] has markedly propelled the field of
text-to-image (T2I) generation forward, allowing users to generate high-quality
images from text prompts. In a bid to further augment the creativity and con-
trollability, recent efforts [2–4, 7, 8, 22, 25, 28, 32, 49, 50, 52] have focused on en-
abling these models to understand and interpret spatial instructions, such as
layouts [3,7,25,28,32,49,50], segmentation masks [2–4,8,22] and sketches [47,52].

Among them, bounding boxes are extensively employed in various down-
stream image generation tasks [3, 7, 25, 28, 32, 50]. GLIGEN [25] is a pioneering
work in terms of enhancing existing T2I models with the capability to incorpo-
rate additional spatial cues in the form of bounding boxes. Its core component,
gated self-attention, is a simple attention module [46] that is plugged into each
U-Net [38] layer of a pretrained T2I model, such as Stable Diffusion [37] and is
trained to accurately position various entities in their designated areas. A notable
advantage of GLIGEN is that the original parameters of the underlying model
remain unchanged, inheriting the generative capability of the T2I model while
introducing the novel functionality of spatial grounding using bounding boxes.
This capability has been leveraged by numerous studies to facilitate high-quality,
layout-guided image generation [9, 32,49].

However, our analysis reveals that GLIGEN’s integration of the gated self-
attention into an existing T2I model is not optimal for blending new spatial
guidance from bounding boxes with the original textual guidance. It often leads
to the omission of specific details from the text prompts. For instance, in the
first row and the third column of Fig. 1, GLIGEN fails to reflect the description
“giving a thumbs up” from the input text prompt. Also in the second row, a crucial
detail in the text prompt, “draped with a colorful blanket”, is neglected in the
output. We refer to this issue as description omission. Such outcomes imply
that the current architectural design of GLIGEN does not effectively harmonize
the new spatial guidance and the text conditioning in the given T2I model.
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Considering the widespread applications of GLIGEN in various layout-based
generation tasks [9, 32,49], these limitations represent a significant bottleneck.

To address the observed neglect of textual grounding in GLIGEN, we first
analyze the root causes. Our investigation reveals that the issue arises from the
sequential arrangement of the spatial grounding and textual grounding modules.
Specifically, the output of the gated self-attention is directed to a cross-attention
module in each layer of the U-Net architecture (Fig. 2-(b)).

Building on this insight, we propose a straightforward yet impactful solu-
tion: network rewiring. This approach alters the relationship between the two
grounding modules from sequential to parallel (Fig. 2-(c)). Remarkably, this net-
work modification significantly reduces the grounding trade-off between textual
and spatial groundings without necessitating any adjustments to the network
parameters. Importantly, this rewiring does not require additional net-
work training, extra parameters, or changes in computational load and
time. Simply reconfiguring the attention modules of the pre-trained GLIGEN,
originally trained with the sequential architecture, during inference dramatically
enhances performance.

In our experiments with MS-COCO [27] and our newly introduced NSR-
1K-GPT datasets, serving as ground truth, we demonstrate that rewiring the
pretrained GLIGEN significantly reduces the trade-off between textual ground-
ing and spatial grounding. This is evidenced by the evaluation of text prompt
alignment (measured using CLIP Score [34] and PickScore [23]) and bounding
box alignment (assessed by YOLO Score [48]). Furthermore, we show that our
rewiring also leads to better outcomes in other frameworks using GLIGEN as a
backbone, including BoxDiff [49].

2 Related Work
2.1 Zero-Shot Guidance in Diffusion Models

The progress in diffusion models [14, 40, 41] has significantly elevated the capa-
bilities of text-to-image (T2I) generation, resulting in foundation models [5, 33,
35–37] that exhibit remarkable generative performance. Leveraging the robust
performance of these models, recent studies [2–4,7,8,22,25,28,32,49,50,52] have
introduced efficient guidance techniques designed to specifically improve the im-
age generation process. Notably, numerous works [7, 25, 28, 32, 39, 49, 50] focus
on the internal architecture (Fig. 2-(a)) of the denoising U-Net of Latent Diffu-
sion Models (LDMs) [37], where self-attention and cross-attention modules are
intertwined to facilitate inter-pixel communication and text conditioning. The
self-attention of U-Net can be utilized to improve image quality [16], facilitate
image translation [45], and support image editing tasks [6]. Since the text condi-
tion is integrated into cross-attention, the intermediate attention map has also
been widely leveraged to improve text faithfulness [10] or enable spatial manip-
ulation of the generation process [31] using text prompts. Recently, FreeU [39]
analyzed the contributions of the backbone and residuals of the U-Net and pro-
posed a free-lunch strategy to enhance image quality: reweighting the backbone
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and residual features maps. In contrast to previous works that only deal with
self- and cross-attention in standard LDMs, we introduce a method to enhance
GLIGEN [25] by reconnecting its gated self-attention with the other attention
modules, thereby achieving performance improvement in zero-shot without any
tuning of the network parameters.

2.2 Layout-Guided Image Generation

The use of layouts, particularly in the form of bounding boxes, has become a
popular intermediary to bridge the gap between textual inputs and the images
generated [11,15,18,24,26,42,43,51,53]. Layout2Im [53] learns to sample object
latent codes from a normal distribution, eliminating the need for predicting in-
stance masks as done in prior works [15,18]. LostGAN [42] improves the ability
to control the style of each object by devising an extension of the feature nor-
malization layer used in StyleGAN [19–21], while OC-GAN [43] incorporates
the spatial relationships between objects using a scene-graph representation.
LAMA [26] introduces a mask adaptation module that mitigates the semantic
ambiguity arising from overlaps in the input layout. While these developments
have greatly improved user control over image generation, their applicability
is confined to the categories found in the training data, such as those of the
MS-COCO [27] dataset.

In contrast, recent studies [4,7,25,32,49,50,55] have extended layout-guided
image generation towards open-vocabulary, building on the advancements of
foundational text-to-image (T2I) models [37]. Training-free approaches [2,4,7,32,
49] aim to improve the spatial grounding of T2I models through straightforward
guidance mechanisms. GLIGEN [25], on the other hand, introduces gated self-
attention, which is injected into the U-Net architecture of the Latent Diffusion
Model [37], and is trained to equip the underlying model with spatial grounding
ability. Given the simple architecture of GLIGEN and its robust grounding ac-
curacy with the input bounding boxes, numerous studies [32, 49, 54] build upon
its framework and propose further refinements to increase performance. In this
work, we identify and address a significant performance bottleneck in GLIGEN
related to description omission and propose a simple yet effective solution.

3 Background — Latent Diffusion Models [37]
Rombach et al. [37] proposed Latent Diffusion Models (LDM), a text-to-image
(T2I) diffusion model using a U-Net as the noise prediction network. It is trained
to generate an image from an input text prompt by predicting the noise ϵ(xt, t, c)
conditioned both on the timestep t and the text embedding c, which is obtained
by encoding a text prompt using a pretrained text encoder [17,34]. Each layer of
LDM’s U-Net consists of three core components: a convolutional residual block,
followed by a self-attention (SA), and a cross-attention (CA) module (Fig. 2-
(a)). In each l-th layer of the U-Net, its residual block first extracts intermediate
visual features F = (f1, ..., fNl

)T from the output of the previous layer. Following
this, a self-attention module facilitates interaction between the features in F .
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Fig. 2: Comparison between the U-Net architectures of (a) Latent Diffusion Model
(LDM) [37], (b) GLIGEN [25] and (c) our ReGround. From LDM, GLIGEN enables
spatial grounding by injecting gated self-attention before cross-attention, forming a
sequential flow of them. Based on GLIGEN, our ReGround changes the relationship
of the two attention modules to become parallel, resulting in noticeable improvement
in textual grounding while preserving the spatial grounding capability. (The residual
block before self-attention is omitted.)

Subsequently, a cross-attention module enables the interaction between each
visual feature fi and the text embedding c. Throughout this process, the output
feature of the previous module is also forwarded through a residual connection,
as illustrated in lines 4-5 and 7 of Alg. 1 and also in Fig. 2-(a).

4 GLIGEN [25] and Description Omission

In this section, we review GLIGEN [25] and its key idea of employing gated self-
attention for spatial grounding. Then, we present our key observations on the
description omission issue that occurs due to the addition of gated self-attention.

4.1 Gated Self-Attention

Li et al. [25] propose a plug-in spatial grounding module, named gated self-
attention, which adopts the gated attention mechanism [1] to equip a pretrained
T2I diffusion model [37] with the spatial grounding ability (Fig. 2-(b)). Given
a set of bounding boxes in the image space and text labels for each of them,
let bi be the xy-coordinates of the i-th bounding box’s top-left and bottom-
right corners, and pi be the corresponding text label. Then, the i-th grounding
token is defined as gi := G (T (pi) ,F (bi)), where T (·) is a pretrained text en-
coder [17,34], F(·) is the Fourier embedding [29,44] and G(·, ·) is a shallow MLP
network that concatenates the two given embeddings, respectively. Given a set of
grounding tokens {gi}, gated self-attention learns the self-attention among the
unified feature set (f1, ..., fNl

, g1, ..., gM ) where {fi} is the set of intermediate
visual features in the l-th layer of U-Net, and M is the number of bounding
boxes.

As shown in Fig. 2-(b), gated self-attention receives the output of the self-
attention as its input and forwards the output feature to the cross-attention
module. By incorporating gated self-attention into each layer of the U-Net, the
model enables the placement of the entity specified in the text label pi at the
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location indicated by the bounding box bi. Note that the integration of gated
self-attention does not require training the network from scratch or fine-tuning it,
but can be accomplished simply by training the gated self-attention parameters
while keeping all other parameters in the backbone model frozen.

Alg. 1 shows the pseudocode of the U-Net forward-pass including the plug-in
of gated self-attention in line 6. Note that βt is set to 1 for GLIGEN. If βt = 0,
the algorithm is identical to that of LDM [37].

Algorithm 1: Noise Prediction U-Net with Gated Self-Attention.
Parameters : βt; // Weight for GSA.
Inputs: xt, c, {gi}i=0···N−1; // Noisy data at timestep t, text condition,

and grounding tokens
Outputs: ϵt; // Noise at timestep t− 1.

1 Function U-Net(xt, c, {gi}):
2 F ← xt

3 for i = 0, . . . , L− 1 do
4 FRN ← Conv(F ) + F ; // Residual block.
5 FSA ← SA(FRN) + FRN; // Self-Attention module.
6 FGSA ← βt ·GSA(FSA, {gi}) + FSA; // Gated Self-Attention module.
7 F ← CA(FGSA, c) + FGSA; // Cross-Attention module.

8 ϵt ← F ;
9 return ϵt;

4.2 Description Omission

Despite its high accuracy in spatial grounding, GLIGEN [25] frequently struggles
to capture essential attributes specified in the input text prompt. As illustrated
in Fig. 3, the image on the left shows a person and a skateboard accurately
placed in their designated regions. However, a critical detail from the input
text prompt, “black and white photography”, is conspicuously absent in the out-
put image. This discrepancy often emerges when the input comprises distinct
but equally important descriptions regarding the image, presented through text
prompts and bounding boxes. Such omissions not only fail to convey the stylistic
intent of the image but also tend to overlook significant objects mentioned within
the text prompt. Additional examples of this problem are showcased in Fig. 1,
where, for example, the second row demonstrates the absence of a “blanket” in
the generated image, a key element from the text prompt. This limitation signif-
icantly hampers GLIGEN’s fidelity to user-provided text prompts, a challenge
we term as description omission.

5 ReGround: Rewiring Attention Modules
Gated self-attention and cross-attention each play a crucial role in enabling spa-
tial and textual groundings, by taking bounding boxes and text prompts as
inputs, respectively. To tackle the issue of description omission, we first examine
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“A black and white photograph of a person wearing DC shoes on a skateboard in the sun”

𝛾 = 1.0 𝛾 = 0.4 𝛾 = 0.2 𝛾 = 0.1 𝛾 = 0.0 𝛾 = 1.0

(a) GLIGEN (b) ReGround

Fig. 3: (a) Images generated by GLIGEN [25] while varying the activation duration
of gated self-attention γ in scheduled sampling (Sec. 5.1). The red words in the text
prompt denote the words used as labels of the input bounding boxes. Note that to
reflect the underlined description in the text prompt in the final image, γ must be
decreased to 0.1, which compromises spatial grounding accuracy. (b) In contrast, our
ReGround reflects the underlined phrase even when γ = 1.0, therefore achieving high
accuracy in both textual and spatial grounding.

the impact of attention modules on the groundings they do not address: the ef-
fect of gated self-attention on textual grounding (Sec. 5.1), and the influence of
cross-attention on spatial grounding (Sec. 5.2). Building on this analysis, we pro-
pose an approach for network reconfiguration, modifying the connections among
self-attention, gated self-attention, and cross-attention modules (Sec. 5.3).

5.1 Impact of Gated Self-Attention on Textual Grounding

As the issue of description omission arises due to the newly added gated self-
attention in GLIGEN [25], we first attempt to mitigate the impact of gated
self-attention by using scheduled sampling [25], activating gated self-attention
only in a few initial steps of the denoising process. This approach is inspired by
the observation that the coarse structure of the final image is established within
the first few time steps. The scheduling is applied by setting the weight of gated
self-attention βt (line 6 of Alg. 1) as

βt =

{
1 (t ≤ γ · T )
0 (t > γ · T ),

(1)

where γ ∈ [0, 1] represents the fraction of the initial denoising steps to activate
gated self-attention.

Fig. 3-(a) shows an example of generated images while incrementally adjust-
ing γ from 1.0 to 0.0. As γ is reduced from 1.0 to 0.0, the details specified in
the text prompt, “a black and white photograph”, begin to be reflected starting
at γ = 0.1, demonstrating that longer activation of gated self-attention may in-
terfere with the alignment of the output image with the text prompt. However,
as gated self-attention is activated for shorter durations, the spatial grounding
diminishes, as shown in the objects’ reduced alignment with the input bounding
box. This phenomenon illustrates the inherent trade-off between spatial and tex-
tual grounding, which cannot be resolved by controlling the duration of gated
self-attention activation.
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5.2 Impact of Cross-Attention on Spatial Grounding

We also investigate whether cross-attention has influence on the spatial ground-
ing. To examine it, we conduct a toy experiment by removing cross-attention
modules in GLIGEN [25], so that the output of gated self-attention is directly
passed onto the next layer of the U-Net. This is equivalent to changing line 7 of
Alg. 1 to F ← FGSA.

The results are displayed in Fig. 4. Note that, while the appearance of
the background and objects changes, the silhouettes of the cat (left) and the
individuals (right) remain precisely positioned within their respective bound-
ing boxes without cross-attention. This observation indicates that while gated
self-attention that is performed before cross-attention may compromise textual
grounding, cross-attention that processes the output of gated self-attention does
not affect spatial grounding.

Layout w/ CA w/o CA Layout w/ CA w/o CA

Fig. 4: Comparison of the output of GLIGEN [25] with and without cross-attention.
While the absence of cross-attention reduces realism and quality of the image, the
silhouette of objects remains grounded within the given bounding boxes, as shown in
the third column of each case.

5.3 Network Rewiring: From Sequential to Parallel

Building on the analyses above, we propose a simple yet effective modification to
the grounding mechanism, changing the relationship between gated self-attention
and cross-attention from sequential to parallel. This change eliminates the place-
ment of gated self-attention before cross-attention, thus preventing the reduc-
tion of text grounding caused by gated self-attention. Moreover, in this parallel
arrangement, the preservation of spatial grounding is assured, as gated self-
attention for spatial grounding does not require subsequent cross-attention.

Specifically, recall that in GLIGEN [25], the output of gated self-attention
is added to the residual from self-attention, which is then passed to the cross-
attention module as follows:

FGSA ← GSA(FSA, {gi})︸ ︷︷ ︸
spatial grounding

+FSA;

F ← CA(FGSA, c)︸ ︷︷ ︸
textual grounding

+FGSA;
(2)

We propose to transform this sequence grounding pipeline into two parallel
processes as follows:

F ← GSA(FSA, {gi})︸ ︷︷ ︸
spatial grounding

+ CA(FSA, c)︸ ︷︷ ︸
textual grounding

+ FSA︸︷︷︸
residual

; (3)
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Refer to Fig. 2 for the visualization of network architecture changes ((b) →
(c)). This network rewiring is feasible because the input to gated self-attention
remains unchanged, while the input to cross-attention shifts to FSA, for which
it was originally designed in the context of Latent Diffusion Models [37].

It is important to note that the modification is effective even when applied
to the pretrained GLIGEN, which was trained with the sequential structure
of the attention modules. Therefore, our rewiring does not require any
additional training or fine-tuning, introduces no extra parameters,
and does not affect computation time or memory usage during the
generation process. The only requirement is the simple reconfiguration of the
attention modules at inference time.

6 Experiments
In this section, we show the effectiveness of our ReGround by evaluating the
spatial grounding on existing layout-caption datasets [9, 27] and the textual
grounding on text-image alignment metrics [23, 34]. We use the official GLI-
GEN [25] checkpoint which is trained based on Stable Diffusion v1.4 [37].

6.1 Datasets

MS-COCO. The validation set of the MS-COCO-2017 dataset [27] consists of
5,000 image-annotation pairs, each of which includes the xy-coordinate of each
bounding box and the corresponding object category. As GLIGEN [25] is trained
to handle a maximum of 30 bounding boxes per image, we exclude pairs that
include more than 30 bounding boxes and with no bounding boxes, resulting in
a total of 4,952 images. We also use the the validation set of the MS-COCO-2014
dataset [27], in which we randomly sample 5,000 pairs for evaluation.

NSR-1K-GPT. The Numerical and Spatial Reasoning (NSR-1K) benchmark,
introduced by Feng et al. [9], is a collection of layout-caption pairs designed
to assess the numerical and spatial reasoning capabilities of image generation
methodologies. The object labels and bounding boxes are from COCO [27], while
the captions are newly annotated based on the spatial relationships and numeri-
cal properties of objects. NSR-1K consists of two subsets: Counting and Spatial.
We randomly sample 1,000 pairs from the Counting set and use all 1,021 pairs
from the Spatial set. Then based upon the subsets, we develop a new benchmark,
NSR-1K-GPT, augmenting each original caption in NSR-1K by employing Chat-
GPT [30] to (i) elaborate on the descriptions of each mentioned entity and (ii)
provide additional details about the background of the image.

6.2 Evaluation Metrics

– YOLO score: The spatial grounding accuracy is assessed using the YOLO
score [48]. We use the pretrained YOLOv7 [48] to detect objects in each gen-
erated image and compute the average precision (AP) based on the ground
truth bounding box annotations in the MS COCO dataset.
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround

“A woman in a white shirt standing in front of a fence smiling.”

“One spotted cow in the photo, [...] under a clear blue sky.”

“A foreign airline status board with a clock.”

“A palm tree shower curtain is shown in a small bathroom.”

“A view of a living room with large windows.”
Fig. 5: Qualitative comparisons. Stable Diffusion (SD, 2nd column) generates images
that align with the given text descriptions, including the underlined phrase in each
row, but cannot take the bounding box constraints as input. GLIGEN (3rd column)
creates images that match the input layouts but suffers from the description omission
issue, failing to include the underlined descriptions in the final image. The scheduled
sampling strategy (4th column) can partially address this issue (for instance, in the 3rd
row, where “airline status board” appears behind the clock), but it results in a noticeable
decline in spatial accuracy (as seen in the 1st row, where the tie is not generated).
In contrast, our method (last column) accurately incorporates the underlined text
descriptions while maintaining precise spatial representation.
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(a) MS-COCO-2014 (b) MS-COCO-2017
Fig. 6: Comparison on the MS-COCO [27] dataset. Each plot shows the relationship
between textual grounding (i.e. CLIP score [12]) and spatial grounding (i.e. YOLO
score [48]) accuracy of GLIGEN [25] and our method. Note that the plot representing
our ReGround is positioned in the top-right quadrant relative to GLIGEN, signifying
that it alleviates the inherent trade-off between textual and spatial grounding.

– CLIP score: The textual grounding accuracy is assessed using CLIP score [12].
The CLIP score is measured by computing the cosine similarity between each
generated image and the input text prompt.

– FID: The image quality and diversity are evaluated using FID [13].
– PickScore: The human preference for different methods is evaluated by

PickScore [23], a CLIP-based [34] scoring function that reflects human pref-
erences.

6.3 Comparison with GLIGEN

Textual-Spatial Grounding Trade-off. We first examine the trade-off be-
tween textual and spatial grounding for both GLIGEN [25] and our ReGround,
the rewired version of GLIGEN, while varying the scheduled sampling parameter
γ from 1.0 to 0.1.

Fig. 6 presents the graphs for CLIP score [12] and YOLO score [48] measured
using the MS-COCO-2014 and MS-COCO-2017 datasets. Using the MS-COCO-
2014 dataset, when reducing γ from 1.0 to 0.1, the CLIP score of GLIGEN
varies from 30.44 to 31.65, while the YOLO score significantly drops from 58.13
to 22.75 (red curve in Fig. 6). In contrast, our ReGround, (blue in Fig. 6),
demonstrates a notably superior trade-off between textual and spatial ground-
ing. Specifically, with γ set to 1.0, ReGround already achieves a CLIP score
of 31.29, accounting for 70.25% of GLIGEN’s total improvement in CLIP score
when γ is reduced from 1.0 to 0.1. Despite this significant increase in CLIP
score, the YOLO score remains largely unchanged, marking 56.96 which repre-
sents only a 3.31% decrease in the range of YOLO score variation for GLIGEN
when γ is adjusted from 1.0 to 0.1. Moreover, when varing the γ, the plot for Re-
Ground (blue) is constantly on the upper right side of GLIGEN (red), signifying
a more advantageous trade-off across varying γ. The same pattern is observed
in the MS-COCO-2017 dataset, where our ReGround achieves 68.33% of the
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(a) NSR-1K-GPT-Counting (b) NSR-1K-GPT-Spatial
Fig. 7: Comparison on the two subsets of NSR-1K-GPT. Consistent with the findings
from the MS-COCO [27], ReGround shows improved performance on the textual and
spatial groundings, as seen by the higher CLIP score [12] for the same range of YOLO
score [48].

increase in CLIP score of GLIGEN while only compromising YOLO score by
2.62% compared to the decrease for GLIGEN.

We further show the quantitative comparisons on the two subsets of the newly
generated NSR-1K-GPT benchmark in Fig. 7. The plots reveal a consistent
trend with the MS-COCO datasets. For NSR-1K-GPT-Counting (Fig. 7-(a)),
by reducing γ from 1.0 to 0.1, GLIGEN’s CLIP score is increased from 32.46
to 33.67, while the YOLO score is decreased from 65.36 to 26.38. In contrast,
when γ = 1.0, ReGround achieves a CLIP score of 33.20, which is equal to
61.16% of GLIGEN’s total improvement in CLIP score, while the compromise
in YOLO score is equal to only 3.69% of the total decrease in the YOLO score
of GLIGEN from γ = 1.0 to γ = 0.1. For NSR-1K-GPT-Spatial (Fig. 7-(b)), the
minimum CLIP score of our ReGround (33.89 at γ = 1.0) is already higher than
GLIGEN’s maximum CLIP score (33.88 at γ = 0.1), indicating that ReGround
obtains a significant enhancement in textual grounding while preserving the
spatial grounding. These results highlights that the advantage of our ReGround
holds robustly for the realistic image captions provided in the MS-COCO [27],
as well as for diverse text prompts generated by ChatGPT [30].

Random Box Dropping. Although ReGround outperforms GLIGEN [25] on
MS-COCO datasets, the layout-caption pairs in MS-COCO are not optimally
designed for evaluating the description omission behavior, since we find that
most of the entities in the text prompt are covered in the bounding boxes. To
further assess the extent of description omission in each method, we modify the
MS-COCO-2017 dataset [27] to make the COCO-Drop dataset. In this version,
the bounding boxes for 50% of the categories are randomly removed from each
image, thereby preventing every entity described in the text prompt from being
included within the bounding boxes.

Fig. 8 shows the quantitative evaluation results of ReGround and GLIGEN
on COCO-Drop. In this case, ReGround shows a larger advantage over GLI-
GEN in CLIP score, obtaining a gap in CLIP score which is 1.57 times that of the
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Fig. 8: Comparison on the COCO-Drop
dataset.

Fig. 9: Comparison of FID [13] on MS-
COCO-2017 [27] dataset.

original MS-COCO-2017 dataset before box dropping for γ = 1.0. Such a larger
gap in CLIP score demonstrates that compared to GLIGEN, our ReGround
better reflects the text prompts even when some entities in the text prompt
are not provided as a bounding box. Fig. 10 displays a representative example,
where GLIGEN fails to generate a cupcake when its corresponding bounding
box is removed in COCO-Drop, whereas our ReGround robustly generates the
cupcake even when it it not provided as a bounding box.

Image Quality. Fig. 9 displays the relationship between YOLO score [48] and
FID [13] for each method on MS-COCO-2017. Note that the FID of ReGround
is constantly lower than that of GLIGEN [25], meaning that our network rewiring
also results in higher image quality.

PickScore. We measure the user preference of the images given a text prompt
for our ReGround over GLIGEN [25] through PickScore [23]. On MS-COCO-
2017, ReGround is preferred over GLIGEN by 55.66% to 44.34%, and on
COCO-Drop, ReGround is preferred by 57.57% to 42.43%.

“A young child looking at a birthday cupcake”
(a) GLIGEN (b) ReGround

w/ box for “cake” w/o box for “cake” w/ box for “cake” w/o box for “cake”

Fig. 10: Generated images from the text prompt and bounding boxes from the MS-
COCO-2017 (left of each column) and our COCO-Drop (right of each column). While
GLIGEN [25] fails to generate “a birthday cupcake” when the corresponding bounding
box is removed, our ReGround successfully generates a cupcake on the table.
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GLIGEN + BoxDiff ReGround + BoxDiff

“One rusty truck in the picture, parked on a deserted 
Highway with a hauntingly beautiful sunset in the background.”

(a) NSR-1K-GPT-Counting (b) NSR-1K-GPT-Spatial (c) BoxDiff Outputs

Fig. 11: Comparison of applying BoxDiff [49] on GLIGEN [25] and our ReGround,
respectively. (a) and (b) show that our ReGround further improves the grounding
quality of BoxDiff on NSR-1K-GPT datasets. (c) While BoxDiff with GLIGEN (left)
also shows description omission – omitting “beautiful sunset” from the text prompt –
BoxDiff with our ReGround contains the sunset in the final image (right).

6.4 Impact of ReGround as a Backbone

We demonstrate that applying our rewiring of attention modules can also im-
prove text-image alignment in other layout-guided generation methods that use
GLIGEN as a backbone. For instance, BoxDiff [49] is a notable example that
uses GLIGEN as its foundation and improves spatial grounding with respect
to the bounding boxes by leveraging cross-attention maps as additional spatial
cues in a zero-shot manner. Our network rewiring can also be combined with
the zero-shot approach of BoxDiff. Fig. 11 illustrates the results on the NSR-
1K-GPT datasets (a) when BoxDiff uses GLIGEN as the base, and (b) when
it uses our ReGround, the rewired GLIGEN, as the base. It depicts that for
the same range of spatial grounding accuracies, ReGround obtains noticeably
higher textual grounding (i.e. CLIP score [12]). Also, as shown in Fig. 11-(c),
our network rewiring allows for a more detailed description to accurately appear
in the final image, both for the entities in the bounding boxes (“truck”) and the
entities that are given as a text prompt (“sunset”).

7 Conclusion
We have demonstrated that a simple network rewiring of attention modules,
making the gated self-attention and cross-attention parallel, surprisingly im-
proves the trade-off between textual and spatial grounding at no additional cost
— without introducing any new parameters, any fine-tuning of the network, or
any changes in generation time and memory. Using the pretrained GLIGEN [25],
which was trained with the original sequential architecture of the two attention
modules, the reconfiguration at inference time has led to achieving higher CLIP
scores, indicating the noticeable improvement in textual grounding accuracy.
Moreover, our ReGround improves the textual grounding while preserving the
spatial grounding accuracy – achieving 70.25% and 68.33% of GLIGEN’s total
improvement with the scheduled sampling in CLIP score while compromising
YOLO score only 3.31% and 2.62% for the MS-COCO-2014 and MS-COCO-2017
datasets, respectively. We also showcased that this simple yet effective solution
for the textual-spatial grounding trade-off can lead to improvements in diverse
frameworks using GLIGEN as a base.
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8 Appendix

In this supplementary material, we provide extensive qualitative comparisons of
Stable Diffusion (SD) [37], GLIGEN [25], and our ReGround on layout-guided
image generation. Note that γ ∈ [0, 1] denotes the fraction of the initial denoising
steps during which gated self-attention is activated, as discussed in Sec. 5.1.

In each row, the input layout is presented in the first column, with the input
text prompt displayed below the images. The phrase underlined in each prompt
highlights the entity subject to description omission, as mentioned in Sec. 4.2.
Furthermore, black arrows are used to denote bounding boxes that some methods
fail to represent accurately, whereas other methods succeed in doing so precisely.
Red arrows signify a failure in either spatial or textual grounding, while green
arrows indicate successful grounding of a specific entity.

Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround



24 Y. Lee and M. Sung

Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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Layout SD GLIGENγ=1.0 GLIGENγ=0.2 ReGround
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